

Daily Tutorial Sheet-4

46.(D) Oxidant is
$$IO_3^-: 3IO_3^- + 16H^+ + 16e^- \longrightarrow I_3^{-1} + 8H_2O \implies n \text{ factor is } : \frac{16}{3}$$

In (A): n factor = 1; (B) n factor = 1

; (C) n factor = 3

47.(A)
$$O_2^0 \longrightarrow NO^{-2} \Rightarrow n \text{ factor} = 4$$

gmeq of O_2 in 1.0 moles of $O_2 = 4 \times 1 = 4$

Since gmeq of O_2 = gmeq of NH_3 = 4

48.(D)
$$P^{-3} \xrightarrow{n=8} H_3 PO_4 \implies 1 \text{ mol } H_3 PO_4 \equiv 8 \text{mol } e^-$$

49.(B) NaHC₂O₄
$$\longrightarrow$$
 n = 2 (as a reducing agent)

 $0.1 \times 2 = 0.2 \text{ N NaHC}_2\text{O}_4$ as a RA.

50.(A) Fluorine more reactive than MnO₂, and is a very strong oxidizing agent.

51.(C) Let M be the molarity of NaHC₂O₄ $\xrightarrow{n=1}$ as an acid

 $\xrightarrow{n=2}$ as a reducing agent.

With KMnO₄:
$$100 \times M \times 2 = 50 \times 0.1 \times 5$$
 \Rightarrow $M = \frac{1}{8}$

With NaOH: $\frac{1}{8} \times 1 \times 100 = 0.1 \times 1 \times V_{mL} \Rightarrow V_{mL} = 125 \text{ mL}$

52.(B) meq of $H_2O_2 = meq$ of MnO_4^- [n factor of $H_2O_2 = 2$; n factor of $MnO_4^- = n$]

$$\Rightarrow 2 \times 0.1 \times 24 = n \times 0.1 \times 16 \qquad \Rightarrow \qquad n = 3$$

53.(D) Learn as a fact.

56.(C) Find n factor using standard result : $\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} = \frac{1}{2} + \frac{1}{10} = \frac{6}{10} = \frac{3}{5} \implies n = \frac{5}{3}$

Hence equivalent weight = $\frac{M}{5/3} = \frac{3M}{5}$

Alternatively, equivalent weight can also be calculated as follows.

$$\begin{split} &[Br_2 + 2e^- \longrightarrow 2Br^-] \times 5 \\ &\underline{Br_2 + 12OH^- \longrightarrow 2BrO_3^- + 6H_2O + 10e^-} \\ &6Br_2 + 12OH^- \longrightarrow 2BrO_3^- + 10Br^- + 6H_2O \end{split}$$

Observe that 10 mol of electron are involve per 6 moles of Br₂. \Rightarrow n factor = $\frac{10}{6} = \frac{5}{2}$

57.(B) g meq of $KHC_2O_4 = gmeq$ of $KMnO_4$

 $2 \times x = 5 \times 0.02 \times \frac{100}{1000}$ $\Rightarrow x = 0.005$ mol. [n factor of KHC₂O₄ as RA = 2; of KMnO₄ = 5]

58.(D) $\operatorname{Cr}_2\operatorname{O_7}^{2^-} + 6\operatorname{e}^- \to 2\operatorname{Cr}^{3^+} \Rightarrow 6\operatorname{e}^- \text{ are required for 1 mol of } \operatorname{Cr}_2\operatorname{O_7}^{2^-}$

59.(A)
$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \to 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O}$$

$$(Sn^{2+} \to Sn^{4+} + 2e^{-}) \times 3$$

$$\frac{}{\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 3\text{Sn}^{2^+} \rightarrow 3\text{Sn}^{4^+} + 2\text{Cr}^{3^+} + 7\text{H}_2\text{O}}$$

$$\Rightarrow$$
 1 mol Cr₂O₇²⁻ \equiv 3mol of Sn²⁺

It is clear from this equation that 3 moles of Sn^{2+} reduce one mole of $Cr_2O_7^{2-}$, hence 1 mol. of Sn^{2+} will reduce $\frac{1}{3}$ moles of $Cr_2O_7^{2-}$.

60.(D)
$$H_2 \overset{-2}{S} \to \overset{0}{S} + 2e^-$$

Equivalent wt. =
$$\frac{\text{Mol. wt.}}{2} = \frac{34}{2} = 17$$
.